首页> 外文OA文献 >Geometrical Frustration in Two Dimensions: Idealizations and Realizations of a Hard-Disk Fluid in Negative Curvature
【2h】

Geometrical Frustration in Two Dimensions: Idealizations and Realizations of a Hard-Disk Fluid in Negative Curvature

机译:二维的几何挫折:负曲率下的硬盘流体的理想化和实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We examine a simple hard-disk fluid with no long-range interactions on the two-dimensional space of constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by which global crystalline order is frustrated, allowing us to construct a tractable, one-parameter model of disordered monodisperse hard disks. We extend free-area theory and the virial expansion to this regime, deriving the equation of state for the system, and compare its predictions with simulations near an isostatic packing in the curved space. Additionally, we investigate packing and dynamics on triply periodic, negatively curved surfaces with an eye toward real biological and polymeric systems.
机译:我们研究了一个恒定的负高斯曲率的二维空间(双曲平面)上没有长程相互作用的简单硬盘流体。这种几何形状为挫败全局晶序提供了自然的机制,使我们能够构建无序的单分散硬盘的易于处理的单参数模型。我们将自由区域理论和病毒式扩展扩展到该状态,导出系统的状态方程,并将其预测结果与弯曲空间中等静压堆积附近的模拟进行比较。此外,我们研究三重周期性负弯曲曲面上的堆积和动力学,着眼于真实的生物和聚合物系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号